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A game problem is analyzed of the encounter of a strictly linear system with

a terminal set with a strong structure, being the union of a finite number of
convex sets, In particular, this problem includes the problem of the pursuit of
an escaping object by several controlled objects, Two types of sufficient solv-
ability conditions are obtained for the encounter problem. The paper is clcse-
ly related to the investigations in [1 —4].

The motion of an object in a finite-dimensional Euclidean space E™ can be des-
cribed by the equation

2 =Az+ o9, v), ueslU veV (1)

where A is asquare n X n -matrix, ¢ (v, V) is a function continuous in all its
arguments, and U and V are compacta in E" . The terminal set M is the union
ofsets M,*, ..., M,*¥, where each of the M;* has the form M;* = M,° -+
M;; M;° are linear subspaces of E™, and M; are closed convex sets belonging to
the orthogonal complements of M,° in E"™ . The problem is to find conditions on
the parameters of game (1) that ensure the encounter of system (1) from a specified in-
itial position with terminal set M (the end of game (1) ) in finite time. We say that
game (1) with z (0) = z, can be completed in finite time if a number T' (z,) exists
and from the current state z (¢) and v (#) we can construct a measurable function
u(t), u@elU, 0t < T (z), where v (f) is an ambitrary piecewise-continu-
ous function with values from V , such that the inclusion z (t,) & M, where t; <
T (z) , holds for the corresponding trajectories [2].

By L; we denote the orthogonal complement of M;° in E™ andby n; we
denote the operator of orthogonal projection from E™ onto L;. Then the inclus-
ion z (f) & M is equivalent to the existence of a2 number ¢ such that ;2 )
M;. The support function of set M;* has the form

sup (Z, ‘p)1 ‘P = L'i
W () = | =My

oo, vYeEL;

We assume that the sets K (M;) = {$ :p & Ly, W, ) < oo} are nonempty
and closed and that the functions Wiy, () are continuouson K (M;), i=1,.
. .,v. We assume as well that set ¢ (U, v) is convex forany v & V.

Let N;{(g), i =1,...,v, be continuous bounded convex-valued mappings
with values in 2E, defined onsome compactum (@, andlet X; be closed convex sets
from L; , where the functions Wx, (p) are continuous on K (X;). We denote
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Mg) = i . (=
(9) ot L, W (9) + Wx, (— )]

We see that the minimum over 1 is achieved on elements of set — K (X;).

Lemma 1, Foranelement ¢* & Q to exists such that
b

pl(Ni @NX)= o
it is necessary and sufficient that

min max A;(g)<<0

qeQ i=1,..., v

The proof follows from Theorem 1.1, in {2],
We form the sets

IF={‘P3‘|’=(‘P1,---,1I’v),|I‘|’i " ___1, q’iELi}

v
H={a:a=(a1,...,av), ai>0,.2 a; =1, OL;EEI}
i=1

and we consider attainability set of system (1) from an initial position z in the time
t for a fixed control v (+)

t

Dtz v(-) = )z + { O —v) @ (U, v (7)) dr

0

@ (1) =AD (@), ©O) =1

See [4] with regard to the integration of convex sets. The set D (¢, z, v(+)) is clos-
ed and convex, Having projected set D (Z, z, v(-)) onto a subspace L; and comput-
ed the support function of the resultant set, we introduce the following functions into
consideration.

Mg, z,0(0) = ﬂﬁli:nl [Woa, 2,000 (0) + War, (—¥9)], i=1,...,v

A(t,2) = min max A;(¢,2,v(-))

v(-) i=1,..., ¥

Weseethat & M ifandonlyif A (0,2) <0, For Y&V, ac H we
set

W(t, 2, a,9) = D) a;(D*(t);, 2) -
i=1
t

[ min max 2 @®* ()i, 9, v)dv

0 PEV uslU oy

nit,z a ¢p)=WwW(,sz a, ) + §1 W, (— )

A (t, 2) = @ig maxp (2, @ ) Ay (t 2) = rrg{anéig pt, s a,P)
22
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We denote
Y= {\P :‘P = (¢11 . -flp‘v)’ ” ‘Pi " < 1’ "pi = Li}
Let
minmax (2, z, , ) = mi 2
R TZ 6 8 o ) = w5 )

Lemma 2, The inequality
A(E, z2)>M (8, 2), t >0, z= E?
holds, If equality (2) is fulfilled, then
A(t, ) > A* (L, 2), t>0, z& £E" (3)

Proof, If Ay..., A, arecertain numbers, then the equality

v
\|
max oA, = max A;
max A ok= mex ki (4)

is valid, Then, using the minimax theorem [5], the inequality connecting minimax
with mlaximin, and using (2), we obtain

v

v
A (2, 2) = min max » oA (¢, 2,2 (-)) > min min max oW RUARS
(t2) v(+) Hg} i ( ))/we‘l"m.) aeﬂigl( 7 D(t 2 w0

aiWMi (—— ‘pq,)) > '&lélél’ ?]QEanI Y (t1 2,q, ‘I’) = A¥ (t‘l Z)
we set
t
W (¢, 2, ¥3) = (@* () ¥, 2) + | minmax (O* (x) i, ¢ (u, v))dv
0 eV ucslU

Ailt, 2) = ||f£;£1 (W (t, z, ¢:) + WMi(— P, yieEL;, i=1,...,v

A similar function was introduced in [2], Let

< 5
max ) (@D* (1) bi, ¢ (4, v)) = ®
uesU i=1

v
) max (@* () ¥i, o, V), >0, e H, yE¥, veV
i=1 ueU
Lemma 3, Letequality (5)be fulfilled. Then
(6)

Mg (8, 2) > max Ai(L,2), >0, z€E"
i=1, .., Vv

Proof, Since
v v

i [D* () Y, P in max (o, 0% (1) ¥,, )
3'23313:5(“‘ (7) b3, @ (u ”/Elf,“e‘v“‘“eé‘“t () b3, @ (v, 2))

then, by virtue of equality (4), from (5) we have
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btz 9> 3 oW (0 + Wy, (— Bl
i=1

v
Ay (8, 3) > gléiﬁ "IIJnGl‘Ill’ iél o, [W (2, 2, ;) + WMi (— )] = i=;13f‘.x, vl'i (s, 2)

We define functions T* (z) and Ty (2) as follows; function T'* () (T* =)
equals the greatest lower bound of the roots of the equation A* (¢, z) = 0 (A, (¢,
z) = 0), ¢ > 0. If the equation has no roots, we set T* (2) ( T, (2)) equalto
4+ oo, Weseethat T* (z) Ty (2). The next Lemma reveals the true sense of
function T'* (z).

Lemma 4, Let T* (2°) << + oo and let equality (2) be fulfilled, Then
for any measurable function v ({) & V, 0 < ¢ <{ T* (z°) , a measurable function
u(ty= U existssuch that z (T* (2°)) & M.

The proof follows from Lemmas 1 and 2,

In what follows we shall derive two types of sufficient conditions ensuring the end
of game (1) by the time TI'* (z). similar conditions can be obtained for the fime
T, (z). We consider the many-valued mappings

H{t, 2z, ¥) = {a: n(t, 2, 4, P) = magp.(t, 2, o, P)}
o=
W (t, z) = {: ma;p(t, 2, a, P) = A* (¢, 2)}
as

and we introduce the function

B, ¥, 0y u, v) = iglai(fb*(t) i, @ (u, V)) —

minmax ﬁ (0 D* (2) s, @ (1, V)

eV uesl i=1

In what follows we assume that mapping H (¢, z, ) is continuous in ¥ onset ¥
(2, 2) for fixed (¢, z). We assume the fulfilment of the second inequality  from
Lemma 2,

Theorem 1, Letthe conditions

a) min max i‘, (@*(T*2) i, o, 1)) >0

=V usU i==

VyeEY (T* (2), 2), « = H(T* (3), 2, V);

b) for each ¢° there exists u° such that
B(T* (2), ¥, @, u, v°), >0
Vye ¥ (T*(2), 2), a < H (T* (2), 3, })

be fulfilled at each point z for which(Q <C7*(z)<Coo. Then game (1), starting from
point Zg, T™ (z5) << oo, can be completed in a time no greater than T* (z,) +
e, where & is an arbitrary positive number,
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Theorem 2, Letthe conditions
a) set W (¢, z) consists of a single vector (¢, z) for all ¢ and z from some
neighborhood of {T* (z'), z'};
b) set H (t, z, ¥ (¢, z)) consists of a single element & (¢, z) forall ¢ and z
from the neighborhood mentioned;
¢) the maximum of the expression
v

1‘.‘21 a; (¢, 2) (D* @) i (¢, 2), @ (u, V)
over U is achieved on a single vector u (¢, z, v) forall ¢ and z from the neighbo:-
hood mentioned and v €= V, be fulfilled at each point 2! for which 0 << T* (z1)
<{ oo. Then game (1) can be completed in a time not exceeding T'* (z,) ,where
2o is the initial position of game (1), under any piecewise~continuous controlv (f)
applied by the opponent,

Note, Theorem 2 is true even without assumption b), but then condition
c) must be fulfilled with some o = H (T* (g, 2, $ (T* (&%), 2)).

Theorems 1 and 2 are proved similarly as in [6] by the methods suggested in [2].

An interesting case is when relation (6) is fulfilled as a strict inequality, The
following example of a pursuit problem illustrates this situation,

Example, The motion of pursuers and escaping are described by the equations
z; =u, lyli<e, i=12, ;€ E" n>2
y'=v, ﬂvu<1, a>1’ yEEn
The pursuit ends at the instant that one of the equalities [z; (t) —y ([ < e, i = 1,2
is fulfilled, Assuming that the players' initial positions satisfy the conditions

z —y° Zg® —y°

ﬁz;°~y°li=ﬁxa°—-y°ﬁ, e> Yol m® — 2| T2 — 21 T2s°— "1

and carrying out the corresponding calculations, we obtain the inequality
M (8, 22) > My (8, 2°) = Ry (2, 2°), 2° = (2% 2", 3°)

and, consequently

T (ZO) <u$i "‘you—a

In this example conditions b) and c) of Theorem 2 are fulfilled, while condition a)
is fulfilled for the initial positions and all current positions arising in this game if con-
trol u is chosen from condition c¢) of Theorem 2.
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